
JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS

Vol. 29, No. 2, March–April 2006

Nonlinear Trajectory Generation for Autonomous Vehicles
via Parameterized Maneuver Classes

Chris Dever,∗ Bernard Mettler,† Eric Feron,‡ and Jovan Popović§

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
and

Marc McConley¶

Charles Stark Draper Laboratory, Inc., Cambridge, Massachusetts 02139

A technique is presented for creating continuously parameterized classes of feasible system trajectories. These
classes, which are useful for higher-level vehicle motion planners, follow directly from a small collection of user-
provided example motions. A dynamically feasible trajectory interpolation algorithm generates a continuous family
of vehicle maneuvers across a range of boundary conditions while enforcing nonlinear system equations of motion as
well as nonlinear equality and inequality constraints. The scheme is particularly useful for describing motions that
deviate widely from the range of linearized dynamics and where satisfactory example motions may be found from
off-line nonlinear programming solutions or motion capture of human-piloted flight. The interpolation algorithm
is computationally efficient, making it a viable method for real-time maneuver synthesis, particularly when used
in concert with a vehicle motion planner. Experimental application to a three-degree-of-freedom rotorcraft test
bed demonstrates the essential features of system and trajectory modeling, maneuver example selection, maneuver
class synthesis, and integration into a hybrid system path planner.

Nomenclature
ai = vehicle model coefficients
Bi,k = i th B-spline basis function of order k
b = binary variable
bi = vehicle model coefficients
barv = goal-attainment binary variable
bman = maneuver class binary variable
Cc, j = time duration constant for maneuver class j
Cs, j = time duration matrix for maneuver class j
ci = vehicle model coefficients
ci,v = i th spline coefficient for signal v
cm = maneuver class duration state
Dx = differentiation operator with respect to variable x
di = vehicle model coefficients
e = data matching error metric
F = nonlinear equation set
f = nonlinear program objective function
f̃ = continuous-time dynamic consistency function
g = inequality constraint vector
H = planning decision horizon

Presented as Paper 2004-5143 at the AIAA Guidance, Navigation, and
Control Conference, Providence, RI, 16–19 August 2004; received 13
September 2004; revision received 21 December 2004; accepted for pub-
lication 19 January 2005. Copyright c© 2005 by the American Institute of
Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper
may be made for personal or internal use, on condition that the copier pay
the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rose-
wood Drive, Danvers, MA 01923; include the code 0731-5090/06 $10.00 in
correspondence with the CCC.

∗Ph.D. Candidate, Department of Mechanical Engineering; currently
Senior Member, Technical Staff, Charles Stark Draper Laboratory, Inc.,
Cambridge, MA 02139; cdever@draper.com. Student Member AIAA.

†Research Scientist, Laboratory for Information and Decision Systems,
Room 32-D784; bmettler@mit.edu. Associate Member AIAA.

‡Associate Professor of Aeronautics and Astronautics, Laboratory of In-
formation and Decision Systems, Room 32-D724; feron@mit.edu. Associate
Fellow AIAA.

§Assistant Professor of Electrical Engineering and Computer Science,
Computer Science and Artificial Intelligence Laboratory, Room 32-D534;
jovan@lcs.mit.edu.

¶Principal Member, Technical Staff, 555 Technology Square;
mcconley@draper.com.

h = equality constraint vector
hbc = boundary condition equality constraint vector
h0

bc = boundary condition equality constraints invariant
with α

hem = dynamic consistency equality constraint vector
h̃em = continuous-time dynamic consistency function
i = summation index
J = planning objective function
Ji = active constraint set i
j = summation index
k = spline order; planning decision step
ki = affine maneuver design constants for planning
l = summation index
� = linear constraint
Mc, j = state transition vector for maneuver class j
Ms, j = state transition matrix for maneuver class j
M = vector of large numbers
m j = binary variable for maneuver class j
N = number of data samples
N f = number of final condition maneuver parameters
Ni = number of initial condition maneuver parameters
nv = number of spline coefficients for signal v
p = finite-dimensional trajectory parametrization
Se = sampling of unit interval for equality constraints
Sg = sampling of unit interval for inequality constraints
s = arc length in v-space
si = i th sampling point
T = maneuver duration
Ts = linear-time invariant (LTI)-mode discretization interval
t = time
u = direct difference vector
û = projected feasible difference vector
Vcoll = collective voltage
Vcyc = cyclic voltage
v = combined trajectory and maneuver parameter vector;

helicopter velocity
Wk = weighting matrix at kth sample instance
x = planning state vector
x0 = initiation state for fixed maneuvers
x̄0, x0 = initiation upper, lower bounds for parameterized

maneuver classes
xF = planning goal state

289

290 DEVER ET AL.

x = helicopter position
y1, y2 = affine boundary condition design vectors
Z = null space of current constraint derivative matrix
z = user-selected system behavior function
z = helicopter elevation
α = maneuver class/boundary condition parameters
γ = dimensionality-reducing map
ζ, ωn = damping ratio and natural frequency for closed-loop

LTI-mode model
θ = helicopter pitch angle
θa = trim pitch angle at hover
σ = reduced maneuver parameterization (scalar)
τ = normalized time
φ, ψ = boundary condition constraint terms

Subscripts

bc = trajectory boundary condition constraints
data = related to flight data
e = dynamic feasibility constraints
f = final condition
goal = boundary condition of desired maneuver instance
hov = hover state
i = initial condition; summation index; sampling index;

i th coefficient
J(.) = current active constraint set
j = summation index; j th maneuver class
k = index set; data sample index; spline order
l = summation index
max = upper bound
min = lower bound
n = number of sampling points
t f = maneuver duration
0 = initial guess; initial condition; initial maneuver

boundary condition set
1 = first trajectory example
2 = second trajectory example

Superscripts

T = vector transpose
ȳ = equilibrium, or trim, value for quantity y
+ = matrix pseudoinverse
′ = differentiation with respect to normalized time
0 = equality constraint not involving boundary conditions

I. Introduction

A CENTRAL challenge in the guidance and control of au-
tonomous vehicles is the difficulty of generating, in a compu-

tationally efficient manner, system reference trajectories that exploit
interesting domains of vehicle nonlinear behavior. A desirable im-
provement over existing methods is the ability to select and execute
families of agile vehicle maneuvers with the same ease as a human
pilot flying a manned rotorcraft or fixed-wing airplane. In addition,
for motion-planning purposes, it is beneficial to have a concise rep-
resentation of agile, dynamically feasible maneuver classes with
continuously variable boundary conditions. Such classes help re-
duce the dimensionality of the planning space while increasing the
richness of available guidance solutions, allowing greater situational
flexibility, and resulting in improved planning performance.

For the first problem of vehicle maneuver design, traditional
trajectory generation methods for nonlinear systems formulate a
continuous-time optimal control problem, with necessary conditions
for optimality following from the calculus of variations.1 For com-
putational tractability, it is frequently necessary to reduce the math-
ematics to a finite-dimensional space, often by formulating an ap-
proximating nonlinear program (NLP).2 Typically, the NLP problem
statement employs equality constraint functions to dictate bound-
ary conditions and enforce nonlinear model feasibility, whereas in-
equality constraints impose bounds on states and controls and de-
scribe obstacles lying in the vehicle navigation space. The literature

presents many useful methods for converting infinite-dimensional
variational trajectory design problems to finite-dimensional nonlin-
ear programs.3−5

Many modern approaches for generating vehicle motions em-
ploy differentially flat, approximately flat, or other output-space and
inverse dynamics trajectory parameterizations.6−13 These formula-
tions provide algorithms with a direct handle on the output signals
that best describe vehicle motion while helping to avoid costly for-
ward integrations and sensitivity calculations.

However, these methods, and even those that exploit highly sim-
plified models of vehicle motion,14 typically resort to an on-line NLP
solution procedure. While perhaps reasonable in some specialized
cases, NLPs have several key liabilities when considered for real-
time implementation: extreme sensitivity to initial solution guesses,
no guarantees of convergence to optimal (or even feasible) results,
and trajectory overparameterization. This last condition of having
too many variables to optimize drives up algorithm dimensionality
while allowing superfluous solution options, especially when what
is often required is simply a specific instance of a common trajectory
type. Thus, a desirable objective is that of bundling sets of useful
maneuvers into continuous classes, organizing the flight envelope
into something akin to a human pilot’s mental model, and simulta-
neously providing a more direct method to synthesize motions.

Many research fields outside of aerospace confront similar chal-
lenges when designing trajectories for complicated nonlinear sys-
tems. Several areas employ data capture of real-world motion as a
means of seeding the trajectory generation process or even defining
concise motion basis sets. For example, in the realm of robotics, it
is possible to adapt observed human walking motions for the con-
trol of manmade legged robots15; other works illustrate a method
for machine learning that is “primed” by example nonlinear sys-
tem demonstrations16; and yet further research provides nonlinear
system basis functions for capturing, reproducing, and modifying
humanoid appendage motions.17 The practice of motion capture is
also common in synthesizing computer animations18−21 from physi-
cal examples, as well as in biological motion research,22−26 in which
the goal is to understand the fundamental bases of motor control.

The concept of using example motions as an aid in trajectory
generation and control of complicated nonlinear systems is also
emerging in the aerospace community. In some cases, it is possible
to use mathematical homotopy methods to transform trajectories for
simple models into similar dynamically feasible motions for more
complicated nonlinear systems.27 In another line of pursuit, several
very practically oriented works directly study flight data from human
expert-piloted aerobatic maneuvers performed on agile small-scale
helicopters.28−30

This paper combines the notion of working from known motion
examples with the rigor of nonlinear programming to create con-
tinuously variable maneuver classes for autonomous vehicles. The
two essential features behind the scheme are the definition of a pa-
rameterized trajectory space and a numerical procedure for feasibly
interpolating between elements in that space. The specific charac-
teristics of the maneuver classes follow from user-provided motion
examples, which may come from off-line nonlinear programming
solutions or real-world motion capture. The feasible space descrip-
tion and the interpolation process center around a low-dimensional
set of variable parameters describing a connected set of trajectory
boundary conditions. Following user-specified variations in these
boundary condition descriptors, the interpolation algorithm employs
a continuation method31,32 adapted from nonlinear parametric pro-
gramming (NLPP) to trace the corresponding variations in the ve-
hicle feasible reference trajectory (which includes full system state
and input information). The result is a straightforward method for
combining the rigors of off-line trajectory design with an efficient
on-line procedure to generate desired feasible motions.

The parameterized maneuver class scheme provides several key
practical benefits. First, it achieves a drastic dimensionality reduc-
tion of the nonlinear trajectory generation problem, similar to lo-
cally linear embedding methods,33,34 in effect describing maneuvers
in terms of intuitive engineering variations and not only as sets of
polynomial coefficients.35 In addition, the interpolation process does

DEVER ET AL. 291

not include an explicit objective function, and thus allows access to
all feasible and useful maneuvers, including trajectories known to
be particularly useful for typical vehicle missions yet hard to derive
through mathematical optimization. The relaxation of strict opti-
mality eliminates the need for Lagrange multipliers from the con-
tinuation procedure, cutting the problem dimensionality essentially
in half compared to NLPP. A further benefit of the method is its
natural ability to represent vehicle motions as hierarchical elements
in existing motion-planning schemes, in particular, those inspired
by general hybrid model analysis and control frameworks.36−38

The paper first discusses maneuver classes as continuous paths
through a parameterized feasible space model of the vehicle flight
envelope. This feasible space arises from familiar nonlinear equality
and inequality constraint functions that define the characteristics of
useful maneuvering trajectories. Introduction of a feasible trajec-
tory interpolation algorithm then allows the user to create contin-
uous maneuver classes easily from a pair of vehicle motion exam-
ples. Next, experimental application to a three-degree-of-freedom
(DOF) Quanser helicopter illustrates the method in practice, using
nonlinear equations of motion, nonlinear constraint functions, and
the creation of a specific maneuver class example. Finally, a brief
introduction to the mixed integer–linear programming hybrid sys-
tem framework demonstrates a method of incorporating and plan-
ning with parameterized maneuver sets. Application to an intuitive
guidance scenario and closed-loop tracking of planner reference so-
lutions shows the complete framework in practice. Conclusions and
an appendix giving identified nonlinear helicopter model numerical
coefficients then follow.

II. Parameterized Maneuvers
In this paper, a maneuver class is defined as a family of related

feasible vehicle trajectories and an associated (small) collection of
parameters α describing variable boundary conditions within that
family. As seen in Fig. 1, these “maneuver parameters” vary within a
useful user-chosen set A, whereas a higher-dimensional dependent
collection of conventional “trajectory parameters” p(α) are used
to capture the corresponding reference vehicle state and control
histories. The parameter vector p is typically a set of spline or basis
coefficients used to cast continuous-time-system “behavior” z(t)
into a finite-dimensional form. The behavior function z(t) itself is a
user-selected set of system state, output, and/or control signals that
completely specify the vehicle reference trajectory.

Practically speaking, the parameters α and the set A span useful
ranges of vehicle maneuvering capabilities and provide free plan-
ning variables for higher-level guidance algorithms. In general, the
vector α may include Ni initial condition descriptors {αk

i }, N f fi-

nal condition descriptors {αk
f }, and even a trajectory time length

descriptor αt f :

α = [
α1

i · · · α
Ni
i α1

f · · · α
N f
f αt f

]T
(1)

A. Trajectory Interpolation
The methods of nonlinear parametric programming (NLPP)39−41

determine p(α) families when every member of the maneuver class
optimizes a common objective function. In contrast, the trajectory
interpolation method of this paper relaxes the strict optimality con-
dition of NLPP and instead uses a feasible continuation procedure
between pairs of user-provided example trajectories to generate a

Fig. 1 Autonomous vehicle with
a parameterized maneuver family.
The low-dimensional vectorα speci-
fies the particular maneuver bound-
ary conditions, whereas the depen-
dent function p(α) gives the cor-
responding feasible trajectory state
and control histories.

range of new feasible motions p(α). This process is computation-
ally less expensive than the full NLPP procedure, and thus makes
possible fast, on-line feasible trajectory generators for nonlinear
systems. Moreover, the framework is extremely general in that the
example trajectories may come from any source, including rigor-
ous off-line trajectory optimization or motion capture of human
pilot-inspired aerobatic and agile maneuvers. These latter trajecto-
ries are extremely useful for autonomous vehicle operation, yet are
typically difficult to codify through an objective function. Given
the trajectory interpolation mechanism, an engineer can construct
a maneuver class by defining a useful set of control parameters α
and then finding off-line a finite set of feasible trajectories from
which an entire family p(α) can be efficiently computed. Note that
trajectory interpolation attempts to retain the qualitative behavior
of the user-provided examples by taking the most “direct” available
feasible path between them. For instance, time-optimal example tra-
jectories from off-line NLP can serve as prototypes for construction
of a class of fast, agile (though likely suboptimal) maneuvers.

B. Constraint Functions
In most cases of interest, the maneuver parameters α dictate ini-

tial and/or final boundary conditions and therefore occur only in the
equality constraint vector. This assumption, along with the discard-
ing of an explicit objective function, leads to the following param-
eterized trajectory feasible space:

h(p, α) = 0, g(p) ≤ 0 (2)

It is useful to think of a feasible trajectory as a concatenated vector

v =
[

p

α

]
(3)

whose components satisfy Eqs. (2). (Here and in the sequel, a
semicolon separator ; denotes vertical vector concatenation, so that
v = [p; α] = [pT αT]T .)

For most autonomous vehicle models, the equality constraint
function h(p) breaks down into two general partitions according
to

h(p, α) =
[

hem(p)

hbc(p, α)

]
(4)

Here, hem(p)denotes those constraints not specifying boundary con-
ditions, but instead used to ensure basic dynamic feasibility. These
feasibility constraints typically arise in working with nonholonomic
path constraints, collocation formulations, quasi-differentially flat
vehicle models, and/or mesh-sampled equations of motion. The
hbc(p, α) partition dictates the trajectory initial and final boundary
conditions, and thus depends explicitly on α:

hbc(p, α) =

⎡⎣ h0
bc(p)

hi (p, αi)

h f (p, α f)

⎤⎦ (5)

(assuming here that Ni = N f = 1 for illustration purposes; more
general cases follow similarly). The subpartition h0

bc(p) denotes
boundary constraints not directly depending on α, and hi (p, αi)
and h f (p, α f) are vectors containing control parameters for initial
conditions αi and final conditions α f , respectively. Typically, hi has
a general form hi (p, αi) = ψi (p) − φi (αi), as a difference of some
nonlinear vector functions ψi (p) and φi (αi). The helicopter example
of the following section will illustrate the role of these functions ψ
and φ. A similar breakdown applies for h f (p, α f).

The inequality constraints in Eqs. (2) assume the general form
g(p) ≤ 0 and capture state and control bounds imposed on vehicle
trajectories during maneuvering. Because α typically determines
the motion boundary conditions, which are captured in the equality
constraint expression, the vector function g depends only the finite-
dimensional trajectory parameterization p.

292 DEVER ET AL.

Fig. 2 General feasible maneuver space. Example maneuvers (p1 and p2) can come from any source, including off-line nonlinear programming and
real-flight motion capture. The parameterized family of feasible maneuvers based on these examples is then given by the feasible space arc p(α).

Fig. 3 Projection method for choosing a unique feasible direction. The
difference vector u(s) is projected onto the local tangent hyperplane to
obtain û(s), a tangent vector for the feasible path v(s) = [p (s); α (s)]. The
path must take into account any inequality constraints occurring on the
feasible arc between v1 and v2.

C. Algorithm
Now, given the parameterized feasible space of Eqs. (2), the in-

terpolation algorithm takes as its inputs two user-provided feasible
motions v1 and v2 describing different instances of the same general
maneuver type (but with different boundary condition values) and
computes as its output a continuous arc v(s) of feasible vehicle tra-
jectories that lie “between” v1 and v2. The algorithm computes the
parameterized family p(α) seen in Fig. 2, working through a vehicle
feasible p space from p1, with boundary condition α1, to p2, with
boundary condition α2. Note that in the figure, and in the following
discussion, it is sufficient to treatα as a scalar without loss of general-
ity, since it is typically possible to choose a (further) dimensionality-
reducing function α = γ (σ) mapping a vector-valued α down to a
single scalar parameter σ with some σ1 and σ2 such that α1 = γ (σ1)
and α2 = γ (σ2).

Leaving specific details to the algorithm pseudo-code presented
below, the interpolation uses feasible projections of the numerical
difference between vectors v1 and v2 to define a unique, continuous
arc that is traceable with standard numerical integration methods.
Consider Fig. 3, which shows a general trajectory v(s) on the fea-
sible solution path (at arc length s) and shows the projection of

the (generally infeasible) difference vector u(s) = v2 − v(s) onto
the tangent plane of equality constraints h and locally active in-
equality constraints gJ0(s). Here, J0(s) denotes the active inequality
constraint index set at a current feasible point v(s). A first-order
feasible projection vector û(s) is easily obtained using the standard
2-norm least-squares formula42

û(s) = ProjZ(s)u(s) ≡ Z(s)+u(s)

= Z(s)[Z(s)T Z(s)]−1 Z(s)[v2 − v(s)] (6)

where Z(s) is a matrix whose columns form a basis for the nullspace
Null(Dv[h(p, α); gJ0(s)(p)]). Note that û(s)defines a first-order fea-
sible direction from v(s) toward v2. Because active inequalities gJ0(s)

function as equality constraints, Null(Dv[h(p, α); gJ0(s)(p)]) de-
fines the tangent space at v(s), in which any direction vector moves
towards feasible vehicle motion. The projection operation of Eq. (6)
simply chooses the direction pointing to the known feasible v2.

Recalling that α is treated as scalar, it is possible to normalize the
projection vector û(s) according to û(s) ← û(s) · (dα/ds)−1 so that
s ≡ α − α1 at every point along the arc. (This scaling allows one to
treat v(s) and p(α) as equivalent functions.)

Given this arc-length normalization, and assuming a mechanism
for updating the active constraint set along the solution arc (as seen
in Fig. 3), the numerically integrated feasible path gives a solution
family p(α) (equivalently v(s)) satisfying

FJ0(s)(p, α) = 0, g(p) ≤ 0 ∀ α1 ≤ α ≤ α2 (7)

where the definition

FJ0(s)(p, α) ≡
[

h(p, α)

gJ0(s)(p)

]
(8)

indicates that the interpolation algorithm regards equality con-
straints h and locally active inequality constraints gJ0(s) as a pa-
rameterized set of nonlinear equations.

The complete trajectory interpolation algorithm in pseudo-code
is formulated as starting from the known feasible v1 = [p1; α1] and
ending at a maneuver with boundary condition parameter αgoal satis-
fying α1 ≤ αgoal ≤ α2. The entire maneuver class results from choos-
ing αgoal ≡ α2. Note that the algorithm begins at each integration step
by first assuming that no inequality constraints are active, testing for
any active components of g, and then adding them to, or deleting
them from J0(s), depending on the direction of û(s) relative to the
first-order behavior of gJ0

(s). For compactness of notation, h(v(s))
denotes h(p, α) in the pseudo-code.

DEVER ET AL. 293

Pseudo-code for Trajectory Interpolation Algorithm:

Inputs: Two feasible maneuvers v1 = [p1; α1] and v2 = [p2; α2] of the same type but satisfying numerically different boundary conditions.

Output: Continuous maneuver family v(s) (equivalently p(α)) “between” the examples v1 and v2. This family follows by integrating the
ordinary differential equation v̇(s) = û(s, v(s)) with scalar independent variable s along [0, αgoal − α1] with initial condition v(0) = v1 and
û(s, v(s)) at any point s given by the following computational procedure:

1: u(s) = v2(s) − v(s) direct difference
2: evaluate Dvh(v(s)) local equality derivatives
3: Z(s) = basis of Null[Dvh(v(s))] tangent space basis
4: û0(s) = ProjZ(s)u(s) project difference
5: û0(s) ← û0(s) · (dα/ds)−1 normalize arc length
6: J1(s) = {i |gi (p(s)) ≥ 0} test for active inequalities
7: if J1(s) = ∅ none active
8: û(s, v(s)) = û0(s)
9: else

10: J2(s) = { j ∈ J1(s)|Dvg j (p(s)) · û0(s) ≥ 0} test inequality behavior
11: if J2(s) = ∅ none active to first order
12: û(s, v(s)) = û0(s)
13: else
14: Z ′(s) = basis of Null{[Dvh(v(s)); DvgJ2

(p(s))]} follow active inequalities
15: û(s) = ProjZ ′(s)u(s) reproject difference
16: û(s, v(s)) ← û(s) · (dα/ds)−1 normalize arc length
17: end
18: end

It is worth noting that this trajectory interpolation algorithm seeks
something akin to a shortest distance path between two known fea-
sible maneuvers, adjusting the direction of the feasible arc when-
ever inequality constraints become active or inactive. In this man-
ner, the interpolation process resembles NLP active-set methods in
its general construction. However, the main difference from NLP
methods is that the resulting feasible maneuver class is defined
solely by the given example motions, v1 and v2, because the in-
terpolation process works between these known feasibles and does
not attempt to simultaneously minimize an additional user-provided
objective function f (p). Therefore, the method will, in most cases,
construct a suboptimal class of maneuvers, when evaluated with
most common objective functions. However, because the interpola-
tion process seeks a “short” feasible arc, the family p(α) generally
retains the attributes of the example maneuvers, and therefore rea-
sonable engineering judgment in choosing v1 and v2 will imply that
p(α) both exists and is satisfactory for subsequent motion planning
purposes.

The active set methods in the above algorithm are necessary be-
cause the feasible arc will generally encounter nonlinear control
and/or state constraint functions. Because the interpolation process
is based on a vector-valued ordinary differential equation subject to
nonlinear constraints, the overall interpolation procedure can be re-
garded itself as a nonlinear dynamic system. Therefore, if it desired
to further speed up the algorithm by eliminating active-set switching
logic and instead avoiding constraint boundaries by some fixed mar-
gin, one can formulate the interpolation process using barrier func-
tion methods. References 43 and 44 give examples of using such
techniques to rapidly find feasible solutions to sets of inequality-
constrained ordinary differential equations.

D. Maneuver Motion Capture
It has previously been mentioned that in addition to generating

example maneuvers for trajectory interpolation by off-line nonlinear
programming, it is possible to record pilot-flown vehicle trajectories
and then cast them as feasible solutions of Eqs. (2). This process
achieves a mathematical transformation zdata(tk) → pdata, taking a
feasible trajectory of the true system and finding a corresponding
feasible motion for the system model. It is useful to begin with an
initial guess for the feasible point by using a standard, weighted
data-matching procedure (such as a polynomial or basis function
fitting algorithm), giving

pdata,0 = arg min
p

N∑
k = 0

‖zdata(tk) − z(tk; p)‖Wk (9)

Here, the tk argument indicates a discrete-time sampled data set.
A user-selected weighting matrix Wk can be used to highlight par-
ticular system states that best describe maneuver characteristics or
to perform data time-windowing. Note that because Eq. (9) does
not contain any model information, the resulting pdata,0 estimate is
merely an initial guess for a feasible p vector.

To obtain an actual feasible point of Eqs. (2), use pdata,0 as an
initial condition for solving the off-line nonlinear programming
problem

min
p

e(p)

subject to
h(p, αdata) = 0

g(p) ≤ 0
(10)

where αdata gives the maneuver boundary conditions as observed in
the flight data. The error minimization objective function e(p) can
favor either the initial parameter estimate, as in

e(p) = ‖p − pdata,0‖ (11)

or attempt to match the flight data directly as closely as possible

e(p) =
N∑

k = 0

‖zdata(tk) − z(tk; p)‖Wk (12)

Because nonlinear programming solutions are extremely sensi-
tive to initial guesses, using pdata,0 from Eq. (9) tends to be far
more effective than trying a user-selected initial estimate. Indeed,
for highly accurate vehicle models, the optimal solution to Program
(10) and pdata,0 from Eq. (9) can be quite close.

III. Application to a Three-Degree-of-Freedom
Helicopter

The three-degree-of-freedom helicopter from Quanser
Consulting45 presents a useful experimental platform for apply-
ing the parameterized maneuver framework. The tabletop-mounted
vehicle, depicted in Fig. 4, emulates the longitudinal dynamics of
full-scale helicopters, with the ability to climb vertically (with eleva-
tion z, measured positive downward from level), travel horizontally
(with angular position x and velocity v, measured positive clock-
wise), and pitch about its elevation arm (with angle θ , as shown in
the figure). Note that all coordinate variables are angular quantities,
because the helicopter is constrained mechanically to an essentially

294 DEVER ET AL.

Fig. 4 Three-degree-of-freedom helicopter from Quanser Consulting.
The instantaneous vehicle configuration is given by the travel angle x,
pitch angle θ, and elevation angle z (downward). (Device photograph by
Quanser Consulting; axes and text added by authors.)

spherical flight space. Actuation comes from two fixed-blade pitch
propellers driven by dc voltage-controlled motors. The “collective”
and “cyclic” inputs control common and differential voltages, re-
spectively, which, in turn, vary the aerodynamic elevation and pitch-
ing torques. A joystick input device enables human operation of the
helicopter.

A. Modeling and Spline Selection
Physical modeling combined with system identification experi-

ments produced the following nonlinear equations of motion:

ẋ = v, v̇ = −a1v − a2V 2
coll sin(θ − θa)

θ̈ = −b1θ̇ − b2 sin(θ) + b0 + b3v|v| + b4VcollVcyc

z̈ = −d1 ż + d2 cos(z) − d3 sin(z) − d5v
2 − d4V 2

coll cos(θ) (13)

As seen in Eqs. (13), the three-DOF helicopter shares many common
nonlinearities with full-scale rotorcraft, including trigonometric

Vcoll(τ ; p) =
√

(1/T 2)z′′(τ ; p) + (1/T)z′(τ ; p) − d2 cos[z(τ ; p)] + d3 sin[z(τ ; p)] + d5v2(τ ; p)

−d4 cos[θ(τ ; p)]
(16)

Vcyc(τ ; p) = (1/T 2)θ ′′(τ ; p) + b1(1/T)θ ′(τ ; p) + b2 sin[θ(τ ; p)] − b0 − b3(1/T 2)v(τ ; p)|v(τ ; p)|
b4Vcoll(τ ; p)

(17)

terms from thrust vector tilting and vehicle kinematics, a speed-
damping effect containing an absolute value expression, and prod-
ucts of thrust expressions (i.e., collective input) with angular quan-
tities. In addition, the twin-rotor configuration leads to quadratic
collective voltage terms and a cyclic-collective input product term.
Note that the helicopter accelerates under the action of both cyclic
control (which alters pitch θ and therefore the horizontal, or driving,
component of thrust) and collective control (which directly governs
the overall thrust magnitude, represented by the V 2

coll term). Over
the speed range of interest, the velocity dynamics exhibited a near-
linear speed-damping effect, whereas the pitch dynamics strongly
followed a nonlinear quadratic v|v| damping term. (The Appendix
gives numerical coefficient values for these equations and briefly
describes the vehicle-modeling process.)

For trajectory-generation purposes, define the system behavior
function z as the 3-vector z(t) = [v(t), z(t), θ(t)]T and then cast
each degree of freedom in a finite-dimensional space, employing a
B-spline46 basis on a normalized time interval according to

v(τ) =
nv∑

i = 1

ci,v Bi,k(τ, i : i + k)

z(τ) =
nz∑

j = 1

c j,z B j,k(τ, j : j + k)

θ(τ) =
nθ∑

l = 1

cl,θ Bl,k(τ, l : l + k) (14)

Here, the splines are of sixth order (k = 6), allowing a suffi-
cient number of smooth derivatives to be computed during model
inversion and control input calculation. Additionally, each sig-
nal basis has the same uniform knot sequence: Sv = Sz = Sθ =
{06, 1/10, 2/10, . . . , 9/10, 16}. The exponents 6 imply knots of
multiplicity 6 at normalized time values 0 and 1, allowing the
state signals to take nonzero values at the start and end of maneu-
ver segments. Together, the spline order and knot selection imply
nv = nz = nθ = 15, so that 15 coefficients completely describe each
helicopter degree of freedom. This type of signal parameterization
has previously been proven useful for autonomous vehicle trajec-
tory design and is presented with numerous examples in existing
references.6,9,10

The normalized time scale τ ∈ [0, 1] is related to the actual time
interval t ∈ [0, T] according to τ = t/T , where T is the trajectory
time length. Naturally, derivatives of a quantity y(τ) on the normal-
ized scale (denoted with primes) and derivates of the same quantity
y(t) expressed on the actual time scale (denoted with overdots) re-
late according to ẏ(t) = (1/T)y′(τ), ÿ(t) = (1/T 2)y′′(τ), and so
forth. Given the spline coefficients in Eqs. (14) and the quantity T ,
a useful output-space finite trajectory parameter p is

p ≡ [{ci,v}nv

i = 1, {c j,z}nz
j = 1, {cl,θ }nθ

l = 1, T
]T

(15)

Working with a normalized time scale allows T to become a free
parameter and will enable direct control over trajectory duration
within maneuver classes. It is useful to adopt the expanded notation
v(τ) = v(τ ; p), z(τ) = z(τ ; p), θ(τ) = θ(τ ; p) as a reminder that
these time domain signals depend explicitly on the components of p.

Given the above choices for z and p, it is a simple matter to invert
the system model of Eqs. (13) and solve for the two input voltage
signals:

Note that both control inputs are nonlinear functions of the compo-
nents of p.

B. Dynamic Feasibility and Boundary Conditions
Because the chosen system behavior function z(t) contains more

system degrees of freedom (three states) than there are input chan-
nels (two voltages), it is necessary to impose equality constraints to
enforce dynamic consistency. Note that such constraints will define
the hem(p) partition of Eq. (4). First, find a differential relation h̃em

that contains all three component states of the behavior function
z(t), that is, some

h̃em(τ ; p) = f̃ (v(τ ; p), z(τ ; p), θ(τ ; p), T) = 0, ∀ τ ∈ [0, 1]
(18)

Such a relation follows easily from elimination of the V 2
coll term

between lines 2 and 4 of Eqs. (13), giving

f̃ (v, z, θ, T) = d4[(1/T)v′ + a1v] cos(θ)

− a2

[
(1/T 2)z′′ + d1z′ − d2 cos(z) + d3 sin(z) + d5v

2
]

× sin(θ − θa) (19)

DEVER ET AL. 295

To obtain an approximating finite-dimensional vector hem(p), sam-
ple the continuous time constraint of Eqs. (18) and (19) along a finite
point set to obtain

hem(p) ≡

⎡⎢⎣h̃em(τ1; p)
...

h̃em(τn; p)

⎤⎥⎦ (20)

where the individual points τi are elements of a finite sampling Se

of the unit interval: Se = {τ1, . . . , τn} ⊂ [0, 1]. For the three-DOF
helicopter, a useful sampling is

Se = {0, 1/30, 1/15, 2/15, . . . , 14/15, 29/30, 59/60} (21)

The other partition of the general equality constraint vector h(p)
is the boundary condition constraint hbc(p, α). As the presence of
the α quantity shows, this vector is the main driver behind the cre-
ation of continuous maneuver classes. Without selecting a specific α
yet, consider first the set of quantities necessary to define an equilib-
rium, or trim state at the beginning and end of a maneuver segment.
Analysis of Eqs. (13) indicates that a steady velocity–elevation pair
(v̄, z̄) is sufficient to determine trim values of pitch, collective volt-
age, and cyclic voltage. For instance, setting all time derivatives to
zero in Eqs. (13) gives the steady pitch relation

a2 sin(θ̄ − θa)
[
d2 cos(z̄) − d3 sin(z̄) − d5v̄

2
] + a1d4v̄ cos(θ̄) = 0

(22)
and steady input relations

V̄coll =
√

d2 cos(z̄) − d3 sin(z̄) − d5v̄2

d4 cos(θ̄)

V̄cyc = b2 sin(θ̄) − b0 − b3v̄|v̄|
b4V̄coll

(23)

Solution for exact trim values in Eqs. (22) and (23) requires a nu-
merical search procedure, similar to thrust-inflow iterations seen in
full-scale helicopter models.47 However, a fortunate consequence of
the trajectory interpolation algorithm is that only first-order equality
constraint derivative information is required, requiring only implicit
differentiation of the above relations.

The overall trim boundary condition constraint function requires
the attainment of initial and final equilibrium values for velocity,
elevation, pitch, collective, and cyclic. In addition, it is required
that elevation and pitch signals have first-order time derivatives
equal to zero at the trajectory endpoints. (A corresponding zero-
derivative condition on velocity proved redundant, given the trim
state boundary value constraints on the two inputs.) Concatenation
of normalized time expressions for all these conditions gives the de-
sired boundary condition equality constraint vector (denoted here
temporarily by ĥbc until the α argument is introduced):

ĥbc(p) ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v(0; p) − v̄i

v(1; p) − v̄ f

z(0; p) − z̄i

z(1; p) − z̄ f

θ(0; p) − θ̄i

θ(1; p) − θ̄ f

Vcoll(0; p) − V̄coll,i

Vcoll(1; p) − V̄coll, f

Vcyc(0; p) − V̄cyc,i

Vcyc(1; p) − V̄cyc, f

(1/T)z′(0; p) − 0

(1/T)z′(1; p) − 0

(1/T)θ ′(0; p) − 0

(1/T)θ ′(1; p) − 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 (24)

C. State and Control Bounds
Last, inequality constraint functions are needed to keep helicopter

trajectories within a reasonable flight envelope and control signals
within physical limits. For the three-DOF helicopter, it is useful to
bound elevation to prevent collisions with the supporting surface
and the upper mechanical restraint limits; the pitch angle must stay
away from extreme θ = ±90◦ values which induce a singularity in
Eqs. (16) and (23). Additionally, it is important to prevent the control
inputs from exceeding reasonable ranges, especially when working
with agile maneuvers that require large control efforts.

These state and input constraints appear in continuous time as

zmin ≤ z(τ ; p) ≤ zmax ∀ τ ∈ [0, 1]

θmin ≤ θ(τ ; p) ≤ θmax ∀ τ ∈ [0, 1]

Vcoll,min ≤ Vcoll(τ ; p) ≤ Vcoll,max ∀ τ ∈ [0, 1]

Vcyc,min ≤ Vcyc(τ ; p) ≤ Vcyc,max ∀ τ ∈ [0, 1] (25)

Similarly to the continuous-time equality constraint of Eq. (18), it
is necessary to sample Inequalities (25) along some sampling of the
unit interval [0, 1] to obtain a finite-dimensional constraint vector.
Therefore, employ the following sampled version of the preceding
inequalities:

g(p) ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zmin − zSg (p)

zSg (p) − zmax

θmin − θ Sg (p)

θ Sg (p) − θmax

Vcoll,min − V
Sg

coll(p)

V
Sg

coll(p) − Vcoll,max

Vcyc,min − V
Sg

cyc(p)

V
Sg

cyc(p) − Vcyc,max

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ 0 (26)

where, for a generic parameterized unit time domain signal y(τ ; p),
the symbol ySg (p) has the definition ySg (p) ≡ [y(s1; p), . . . ,
y(sm; p)]T , where the si are the sampling points Sg = {s1, . . . , sm} =
{0, 1/20, . . . , 1} ⊂ [0, 1].

D. Example: Bounded-Control Quick-Stop Maneuver Class
Given the helicopter boundary constraint expression of Eq. (24),

it is a simple matter to create a parameterized class of quick-stop
maneuvers. Here, all trajectories end at a steady hover state with
v̄i = z̄i = 0. However, let the initial trim velocity v̄i be variable; that
is, assign α ≡ v̄i . For simplicity, assume that z̄i = 0 is fixed over the
maneuver class.

Given this specific choice of α, introduce it into all boundary
condition rows of Eq. (24) that depend on the initial helicopter
velocity. Recalling from Eqs. (22) and (23) that the initial trim pitch
angle and input voltages vary with v̄i , insert the boundary parameter
α into the corresponding rows of Eq. (24) to obtain

hbc(p, α) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v(0; p) − α

v(1; p) − 0

z(0; p) − 0

z(1; p) − 0

θ(0; p) − θ̄i (α)

θ(1; p) − θ̄hov

Vcoll(0; p) − V̄coll,i (α)

Vcoll(1; p) − V̄coll,hov

Vcyc(0; p) − V̄cyc,i (α)

Vcyc(1; p) − V̄cyc,hov

(1/T)z′(0; p) − 0

(1/T)z′(1; p) − 0

(1/T)θ ′(0; p) − 0

(1/T)θ ′(1; p) − 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 (27)

296 DEVER ET AL.

Note that all boundary trim constraints depend on the spline param-
eterization p (which includes T) whereas only four rows depend
on α. While carrying out the interpolation algorithm, it is necessary
to compute the derivative matrix Dvh(p, α), where h(p, α) has the
decomposition given in Eq. (4). Therefore this derivative matrix has
the following block structure:

Dvh(p, α) =
[

Dphem(p) 0

Dphbc(p, α) Dαhbc(p, α)

]
(28)

where comparison with Eq. (27) reveals that the Dαhbc(p, α) is a
column vector with only four nonzero elements; these elements are
the mathematical drivers for interpolation of this maneuver class.

An off-line feasible point NLP algorithm provides two example
quick-stop maneuvers. The first has α1 = −10 deg/s, whereas the
second corresponds to α2 = −50 deg/s, thus covering a wide range
of initial velocity conditions. (The helicopter dynamics are essen-

Fig. 5 Velocity profiles for quick-stop maneuver class.

Fig. 6 Elevation profiles for quick-stop maneuver class.

tially identical in both travel directions; the velocity sign simply in-
dicates the specific direction.) Applying the interpolation algorithm
across the entire α1 ≤ α ≤ α2 range produces the feasible velocity,
elevation, and pitch profile curves of Figs. 5, 6, and 7, respectively.
Note that each signal exhibits smooth variations over the range of
initial velocity (denoted by v0), making continuous transitions be-
tween the known feasible motions at either extreme. In particular, the
pitch profiles exhibit an intuitive large-angle reverse flare to reduce
helicopter speed, with the flare duration (and thus total deceleration)
growing with increasing initial speed magnitude.

Figures 8 and 9 display the corresponding control behavior over
the maneuver class, with upper and lower bounds imposed (and
required) for both signals. (These two figures are plotted vs normal-
ized time τ for visual clarity.) Contact between the collective profile
set and the upper constraint boundary is visible near the beginning
and end of the control sequence for initial maneuver speeds around
20 deg/s and near the middle of the control sequence for a majority

DEVER ET AL. 297

Fig. 7 Pitch profiles for quick-stop maneuver class.

Fig. 8 Collective voltage profiles for quick-stop maneuver class.

of initial speeds. The cyclic profiles tend to encounter the control
limits toward the beginning and end of their respective profiles. The
nonlinearity of Eqs. (16) and (17) is evident, especially in the range
−10 ≤ α ≤ −30 deg/s. However, despite the nonlinearity, the con-
trol strategy is essentially the same, reflecting the intended property
of retaining the maneuver “style” during the interpolation process.
The cyclic input displays a brief spike at the beginning and end of
each quick-stop, essentially pitching the helicopter initially back-
ward and then restoring it to a steady hover trim value as seen in
Fig. 7. The collective input profiles assist somewhat in this motion
[recall the product input term in line 3 of Eqs. (13)], but more im-
portantly display a broad hump for most of the maneuver, applying
a large reverse thrust to decelerate the helicopter.

The bounding example maneuvers used to generate this class were
slightly suboptimal, given the control bounds, when compared to a
minimum-maneuver time objective function. Overall, each member
of the interpolated maneuver class stays within a 1-s time margin of
a corresponding optimal flare-stop maneuver.

E. Coupled Boundary Conditions and
Further Dimensionality Reduction

As mentioned in the earlier discussion of trajectory interpola-
tion techniques, it is often useful to map a general boundary con-
dition vector α down to a single scalar variable of integration σ by
employing a user-selected function γ such that α = γ (σ). Such a
map reduces the interpolation procedure to a single scalar numer-
ical integration process, avoiding the need to integrate in the full
multicomponent vector space of α.

Proper choice of σ and γ has the added benefit of enforcing exact,
coupled variations in boundary conditions over a given maneuver
class. For example, in the above quick-stop maneuver class, the net
position change resulting from vehicle deceleration will be some
general nonlinear function of the initial speed, determined by the
vehicle dynamics and the selected control bounds. However, as will
be seen next in the context of hybrid motion planning, it is often de-
sirable to enforce exact, coupled affine relationships between initial
and final boundary conditions.

298 DEVER ET AL.

Fig. 9 Cyclic voltage profiles for quick-stop maneuver class.

Such an explicit relation can easily be accommodated by choosing
σ equal to some initial boundary condition parameter and then ex-
pressing the general α vector (containing all initial and final bound-
ary condition parameters) as α = y1σ + y2 for some user-selected
constant vectors y1 and y2. In the case of the quick-stop maneu-
ver, one could choose an α vector as α = [v̄i , �x]T and then en-
force a linear correlation between initial velocity and net position
change by choosing σ ≡ v̄i with α = y1σ + y2, where y1 = [1, c1]T

and y2 = [0, c2]T , for some constants c1 and c2.

IV. Motion Planning with Parameterized
Maneuver Classes

Vehicle motion planners often employ hybrid system representa-
tions to reduce the system state space to only the essential variables,
thus simplifying the planning problem’s search space. Such hybrid
vehicle models are based on a principle of hierarchical decomposi-
tion, quantifying system dynamics to enable planning in a practical
subspace of useful vehicle motions.38

For hybrid models of the maneuver automaton (MA) form,48,49

which combine a finite collection of trim trajectories and fixed ma-
neuver elements, the state-space is small enough to allow for policy-
based guidance systems based on a value function precomputed off-
line. In more recent hybrid linear time-invariant maneuver automa-
ton (LTI-MA) models, in which a finite number of linearly controlled
modes (termed LTI-modes) replace the trim trajectory elements,
motion planning typically requires solving an on-line optimization
problem. Mixed integer–linear programming (MILP) optimization
techniques have been highly effective for formulating and solving
such trajectory planning problems, because they enable one to ex-
plicitly account for hybrid structures and allow easy incorporation
of other useful problem elements.50−53

Given the availability of parameterized maneuver classes, it is
now possible to generalize the hybrid LTI-MA model’s representa-
tion of maneuvering elements. The following section presents the
extensions necessary to include parameterized maneuver sets in the
MILP formulation, using few additional constraint functions. This
extension increases the range of trajectories captured by the hybrid
model, thus allowing better satisfaction of planning objectives.

A. MILP Trajectory Optimization
The basic elements of a mixed integer–linear program for a free

continuous variable x and binary integer variable b include a (piece-
wise) linear objective function J (x), linear constraint functions
�(x), and appropriately sized vectors M of large numbers. The typ-

ical optimization problem statement has the form

min
x,b

J (x)

subject to:

�1(x) ≤ Mb

AND �2(x) ≤ M(1 − b)

b ∈ {0, 1} (29)

In motion-planning applications, the objective function defines the
goal of a vehicle guidance problem. The constraints and binary vari-
ables model the specific system and problem structure, in particular,
modeling closed-loop vehicle dynamics and enforcing numerous
constraints, such as flight envelope restrictions and the presence of
obstacle boundaries.

Of particular interest is the ability to consider mode-switching
logic and other conditional expressions. For example, in pro-
gram (29), when b = 0, the constraint �1(x) ≤ 0 must be satisfied,
whereas �2(x) ≤ M(1 − b) = M effectively relaxes the �2(x) con-
straint (since M is selected to be sufficiently large relative to other
problem data). Note that the constraint activations are reversed when
b = 1. Because b can take on only the binary values 0 or 1, exactly
one of the inequality constraints must be satisfied.

In the basic LTI-MA MILP formulation,50−53 the inequality con-
straints include the LTI-mode state update equations (one for each
mode) and state transition relations describing the effect of maneu-
vering actions (one for each maneuver), as well as maneuver initia-
tion requirements (e.g., vehicle speed within some range). Note that
at every point in time, either one of the LTI-modes or one of the ma-
neuvering actions must be active. MILP binary variables are critical
for enforcing this either/or condition. The reader may consult the
existing literature50−53 for the detailed motivation and treatment of
the basic LTI-MA MILP formulation.

B. MILP Trajectory Optimization with
Parameterized Maneuver Classes

To include parameterized maneuver classes in the standard MILP
formulation,50−53 their corresponding maneuvering state transition
equations must be in the form of a linear constraint �(x). The
minimum-time formulation also requires a single affine expression
to describe the maneuver time duration across the entire maneuver
class.

DEVER ET AL. 299

To this effect, one uses affine state transition inequalities that cap-
ture the variation in maneuvering effect across the entire maneuver
class. Considering the j th maneuver class, with a corresponding
maneuver binary variable bman, j [k], the state transition inequalities
take the form

x[k + 1] − Ms, j x[k] − Mc, j − x[k] ≤ M(1 − bman, j [k])

−x[k + 1] + Ms, j x[k] + Mc, j + x[k] ≤ M(1 − bman, j [k]) (30)

The matrix Ms, j represents the state-dependent component of the
transformation while Mc, j gives the constant component. Note the
members of this maneuver class can now be designed for execution
over a continuous range of initial planning states, as enforced by the
constraint pair

x[k] − x̄0 ≤ M(1 − bman[k])

−x[k] + x0 ≤ M(1 − bman[k]) (31)

in contrast to single, fixed-maneuver initial condition in existing
LTI-MA-based planners.52,53

Because it is difficult to include the full cost update expression
directly in the objective function, we define a maneuvering cost state
cm[k], which is set as follows when a member of the j th maneuver
class is executed:

cm[k] − Cs, j x[k] − Cc, j ≤ M(1 − bman, j [k])

−cm[k] + Cs, j x[k] + Cc, j ≤ M(1 − bman, j [k]) (32)

Similar to inequalities (30), the state-dependent and constant coef-
ficients are Cs, j and Cc, j , respectively. In LTI-mode, the maneuver
cost term is naturally set to zero:

cm[k] ≤ M
∑

j

bman, j [k]

−cm[k] ≤ M
∑

j

bman, j [k] (33)

This cost state then enters the planning objective function as follows:

J =
H∑

k = 0

[
barv[k]kTs + cm[k] −

∑
j

bman, j [k]Ts

]
(34)

C. Obtaining/Satisfying Affine State-Transition
and Cost-Update Equations

Both the affine state-transition and affine duration requirements
of the MILP planner introduce additional constraints on a maneu-
ver class. These requirements can be imposed by simply applying
an affine map α = γ (σ) as previously discussed and then includ-
ing this relation in the appropriate α-dependent rows of hbc(p, α).
The next section gives a specific example of this method. (Note that
because the MILP planner considers the maneuver class to have
variable initial conditions, α must include at least one component
corresponding to a vehicle initial condition.) By first generating a
class of time-optimal maneuvers off-line, it is possible to choose
the affine state and duration functions to minimize the overall op-
timality gap, thus helping to maintain agile vehicle performance
characteristics within the hybrid planning framework.

V. Motion-Planning Example
This section describes a simple but general one-dimensional ex-

ample of using parameterized maneuver sets for practical helicopter
guidance problems, exploiting the capabilities of trajectory classes
in the MILP hybrid system framework. References 54, 55 present
additional planning examples, including motions involving the full
two-dimensional planning space of the Quanser helicopter.

The scenario requires the helicopter to start at a forward speed
of 50 deg/s and then return, in minimum time, to a position located
500 deg behind it. The elevation z is restricted to a level flight condi-
tion. The MILP planner is used to find the minimum-time solution,

taking advantage of a velocity control mode and two parameterized
maneuvers classes: a direction-reversal and a flaring quick-stop.

For this example, the nonmaneuver linearly controlled mode of
the LTI-MA framework52,53 models the closed-loop system in a ve-
locity command-tracking loop. Therefore, it is useful to select a
three-dimensional planning state x[k] ≡ [v̇[k], v[k], x[k]]T . Given
this form of x[k], the initial state is x0 = [0, −50, 0]T , correspond-
ing to an initial steady cruise velocity of −50 deg/s with a refer-
ence planning initial position of 0 deg. The hover waypoint desti-
nation, located 500 deg behind the helicopter, gives a goal state of
xF = [0, 0, +500]T .

The helicopter motion planner has access to two parameterized
maneuver families. (A general planner would of course include
many maneuver classes, but only those useful to this particular guid-
ance problem are mentioned here.) The first is a direction-reversal
maneuver, which quickly decelerates the helicopter, reverses direc-
tion, rapidly accelerates, and ultimately returns to a steady cruise
state of the same speed, but with opposite sign. Symbolically, the
resulting velocity change corresponds to v̄ f = −v̄i . Further, the ma-
neuver class can be designed so that x f = xi exactly, so that no
net position change occurs from the reversal. In setting up this ma-
neuver class for trajectory interpolation, it is useful to select the
control parameters α ≡ [v̄i , v̄ f , T]T and apply a dimensionality-
reducing map α = γ (σ). The scalar σ is chosen identically equal
to initial velocity σ ≡ v̄i , so that the map γ has the specific form
γ = [σ, −σ, k1σ + k2]T , where k1 and k2 are constants selected to
create a dynamically feasible reversal class with time duration be-
ing an affine function of σ = v̄i . [Recall the requirements of in-
equalities (32).] The speed reversal and zero net displacement fit
easily within the affine state transition requirements of inequalities
(30). Finally, choose maneuver initiation bounds [recall inequali-
ties (31)] requiring the helicopter initial speed to be in the range
−65 ≤ v̄i ≤ −5 deg/s. Creation of the maneuver class follows easily
by generating example maneuvers at either extreme of the initial
speed range, inserting the components of α into the suitable rows of
the boundary condition constraint vector hbc(p, α), and then apply-
ing the interpolation algorithm using σ as the independent variable.

Design of a quick-stop maneuver follows similarly, closely resem-
bling the example of Figs. 5 through 9, but this time starting with a
positive velocity. Here, choose α ≡ [v̄i , x f , T]T , noting that v̄ f ≡ 0
since each member of the maneuver class ends at a steady hover
state. To allow for a single-independent-variable interpolation pro-
cedure, apply a dimensionality-reducing map α = γ (σ) with σ ≡ v̄i

and γ = [σ, k3σ + k4, k5σ + k6]T . Again, the ki coefficients are se-
lected so that position change and time duration are feasible affine
functions of the maneuver initial speed, which may vary over the
range 10 ≤ v̄i ≤ 60 deg/s.

Optimization of the minimum-time guidance problem with the
preceding LTI-mode and two maneuver classes gives the refer-
ence position and velocity solutions depicted in Figs. 10 and 11,

Fig. 10 Path-planning travel (position) solution for one-dimensional
retreat-to-hover scenario.

300 DEVER ET AL.

Fig. 11 Path-planning velocity solution for one-dimensional retreat-
to-hover scenario.

respectively. Also shown (dashed line) are the actual experimental
closed-loop vehicle tracking signals for these planning states.

After an initial one-decision step hold (a consequence of a user
choice to fix the first LTI-mode command at the initial cruise speed),
the planner immediately executes a direction-reversal, then fol-
lows a slowly varying LTI-mode cruise mode for around 7 s, and
then executes a quick-stop maneuver at v̄i = +48.48 deg/s. Re-
peated guidance solutions over varying sets of initial helicopter
cruise speeds consistently result in similar strategies. The rapid
reversal maneuver is significantly faster than an LTI-mode-only
deceleration–acceleration motion and, thanks to the continuously
parameterized maneuver capability, can be executed at any speed
satisfying −65 ≤ v ≤ −5. Compared to previous MILP planners
with fixed maneuver elements,52 there is no need to spend valu-
able time changing speed to meet their fixed maneuver boundary
condition.

VI. Conclusions
The method for synthesizing parameterized maneuver classes de-

scribed in this paper represents a very useful capability for real-time
trajectory generation problems commonly found in autonomous ve-
hicle guidance. It provides the following practical advantages:

First, it enables user freedom in choosing example motions and
imposing design constraints. Proper example choice allows the en-
gineer to select a “style” for a given maneuver class. For example, if
a set of agile maneuvers is desired, one might choose highly aggres-
sive prototype motions that maximize control effort. Alternatively,
one might select comparatively slower motions that minimize con-
trol effort when slowly varying, smooth motions are desired. Con-
straint selection allows the user to design specific variations within a
maneuver class or govern how the class interfaces with higher-level
motion planners.

Further, trajectory interpolation is a viable method for real-time
trajectory generation. Depending on computing resources, nonlin-
ear programming can take tens of seconds or even several minutes
to calculate a single feasible vehicle maneuver. In contrast, interpo-
lation can compute an entire class of feasible maneuvers in about
one tenth the computing time. On-line trajectory generation can be
made extremely fast by storing samples of maneuver class members
in memory and then performing interpolation over shorter intervals,
enabling near real-time trajectory computation.

Also, when combined with higher-level path planners, such as
the MILP-based framework, parameterized trajectories can greatly
improve planning performance, because maneuver boundary con-
ditions are no longer fixed, but can instead vary over significant
ranges. This broadening of available trajectories requires very few
extra formalisms in the MILP problem statement. Overall, the ma-
neuver classes help create a logical hierarchical decomposition of

Table A1 Identified model parameters for
three-degree-of-freedom helicopter nonlinear model

Parameter Estimate Parameter Estimate

a1 0.0252 b4 1.42
a2 0.0525 d1 0.112
θa 0.0827 d2 0.243
b0 0.131 d3 0.504
b1 0.163 d4 0.0905
b2 1.58 d5 0.0400
b3 0.449

path planning and inner-loop trajectory generation functions and is
not necessarily limited to MILP-based frameworks.

The basic method outlined in this paper is applicable to any system
the trajectories of which can be generated by nonlinear programs
with differentiable constraint functions. Therefore, applicable sys-
tems include those with differentially flat models, invertible sys-
tem models subject to nonholonomic constraints (the three-degree-
of-freedom helicopter is of this type), state feedback linearizable
models, and systems employing state-input collocation formula-
tions (also known as transcription).

Future applications include parameterized aerobatic helicopter
maneuvers, design of agile fixed-wing motions based on expert
fighter pilot demonstration, and human demonstrationbased robotic
machine learning. Of theoretical interest is the determination of
general “interpolability” conditions, indicating when two arbitrary
feasible motions will define a well-posed maneuver class.

Appendix: System Identification
The data in Table A1 give numerical coefficient values for the heli-

copter nonlinear model of Eqs. (13) and resulted from a two-part ve-
hicle system identification experiment. The first step involved devel-
oping a linear hover model (for steady flight condition: v = 0, z = 0)
using a combination of piloted and signal-generated frequency
sweep inputs and measured vehicle responses. Application of the
rotorcraft system identification package CIFER® then produced fre-
quency and time domain linear hover models.56 The second step
determined the full nonlinear equations of motion and coefficients
by physically modeling the observed nonlinear effects (thrust vec-
tor tilting, speed sensitivity, voltage-to-rotor-thrust relations,47 etc.)
and then performing specific regression experiments to determine
actual coefficient values. Reference 54 gives a detailed discussion
of the physical modeling and system identification procedures used
to obtain the nonlinear vehicle model.

Acknowledgments
This research was funded under Draper Laboratory Internal

Research and Development Project 13177, NASA Ames Research
Center Project NAG 2-1552 for “Motion Planning for Agile Ma-
neuvering Vehicles,” U.S. Air Force Research Laboratory Project
F33615-01-C-1850 for “Safe Operation of Multi-Vehicle Systems,”
and Navy–Office of Naval Research Project N00014-03-1-0171
for “Integrated Flight Management and Situational Awareness for
Highly Maneuverable Autonomous Systems.” The authors thank
Leena Singh, John Hauser, and Brent Appleby for their suggestions
regarding algorithm development, as well as Tom Schouwenaars
for his helpful discussions on higher-level motion planning and the
incorporation of maneuver elements. Masha Ishutkina, Steve Hall,
and the MIT Department of Aeronautics and Astronautics were ex-
tremely helpful in providing access to and support for the Quanser
flights. The authors also thank the anonymous reviewers for their
helpful feedback.

References
1Bryson, A. E., and Ho, Y.-C., Applied Optimal Control: Optimization,

Estimation, and Control, revised printing, Taylor and Francis, New York,
1975, pp. 177–179.

2Bertsekas, D. P., Nonlinear Programming, 2nd ed., Athena Scientific,
Belmont, MA, 1999, pp. 307–309.

DEVER ET AL. 301

3Betts, J. T., “Survey of Numerical Methods for Trajectory Optimiza-
tion,” Journal of Guidance, Control, and Dynamics, Vol. 21, No. 2, 1998,
pp. 193–207.

4Betts, J. T., Practical Methods for Optimal Control Using Nonlinear Pro-
gramming, Society for Industrial and Applied Mathematics, Philadelphia,
2001, pp. 61–79.

5Hull, D. G., “Conversion of Optimal Control Problems into Parame-
ter Optimization Problems,” Journal of Guidance, Control, and Dynamics,
Vol. 20, No. 1, 1997, pp. 57–60.

6Chauvin, J., Sinegre, L., and Murray, R. M., “Nonlinear Trajectory Gen-
eration for the Caltech Multi-vehicle Wireless Testbed,” European Control
Conf., 2003.

7Faiz, N., Agrawal, S. K., and Murray, R. M., “Trajectory Plan-
ning of Differentially Flat Systems with Dynamics and Inequalities,”
Journal of Guidance, Control, and Dynamics, Vol. 24, No. 2, 2001,
pp. 219–227.

8Kim, S. K., and Tilbury, D., “Trajectory Generation for a Class of Nonlin-
ear Systems with Input and State Constraints,” Proceedings of the American
Control Conference, American Automatic Control Council, Evanston, IL,
2001, pp. 4908–4913.

9Milam, M. B., Franz, R., and Murray, R. M., “Real-Time Constrained
Trajectory Generation Applied to a Flight Control Experiment,” IFAC World
Conference, Barcelona, July 2002.

10Milam, M., Mushambi, K., and Murray, R. M., “A New Compu-
tational Approach to Real-Time Trajectory Generation for Constrained
Mechanical Systems,” Proceedings of the 39th IEEE Conference on De-
cision and Control, Vol. 1, IEEE Publications, Piscataway, NJ, 2000,
pp. 845–851.

11Petit, N., Milam, M., and Murray, R., “Inversion Based Constrained Tra-
jectory Optimization,” 5th IFAC Symposium on Nonlinear Control System
Design, 2001.

12van Nieuwstadt, M., Rathinam, M., and Murray, R. M., “Differ-
ential Flatness and Absolute Equivalence of Nonlinear Control Sys-
tems,” SIAM Journal on Control and Optimization, Vol. 36, No. 4, 1998,
pp. 1225–1239.

13Verma, A. J., and Junkins, J. L., “Trajectory Generation for Transition
from VTOL to Wing-Bourne Flight Using Inverse Dynamics,” AIAA Paper
2000-971, Jan. 2000.

14Seywald, H., “Trajectory Optimization Based on Differential Inclu-
sion,” Journal of Guidance, Control, and Dynamics, Vol. 17, No. 3, 1994,
pp. 480–487.

15Dasgupta, A., and Nakamura, Y., “Making Feasible Walking Motion
of Humanoid Robots from Human Motion Capture Data,” Proceedings of
the 1999 IEEE International Conference on Robotics and Automation, IEEE
Publications, Piscataway, NJ, 1999, pp. 1044–1049.

16Schaal, S., “Learning from Demonstration,” Advances in Neural In-
formation Processing Systems, edited by M. C. Mozer, M. I. Jordan, and
T. Petsché, Vol. 9, MIT Press, Cambridge, MA, 1997, pp. 1040–1046.

17Ijspeert, A. J., Nakanishi, J., and Schaal, S., “Trajectory Formation for
Imitation with Nonlinear Dynamical Systems,” Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS2001),
IEEE Publications, Piscataway, NJ, 2001, pp. 752–757.

18Arikan, O., and Forsyth, D. A., “Interactive Motion Generation
from Examples,” Proceedings of the 29th Annual Conference on Com-
puter Graphics and Interactive Techniques (SIGGRAPH 2002), ACM
SIGGRAPH, Association for Computing Machinery, New York, 2002,
pp. 483–490.

19Kovar, L., Gleicher, M., and Pighin, F., “Motion Graphs,” Proceedings
of the 29th Annual Conference on Computer Graphics and Interactive Tech-
niques (SIGGRAPH 2002), ACM SIGGRAPH, Association for Computing
Machinery, New York, 2002, pp. 473–482.

20Popović, J., Seitz, S. M., and Erdmann, M., “Motion Sketching for Con-
trol of Rigid Body Simulations,” ACM Transactions on Graphics, Vol. 22,
No. 4, 2003, pp. 1034–1054.

21Witken, A., and Popović, Z., “Motion Warping,” Proceedings of 23rd
Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH 1995), edited by R. Cooke, ACM SIGGRAPH, Association
for Computing Machinery, New York, 1995, pp. 105–108.

22Amit, R., and Matarić, M. J., “Parametric Primitives for Motor Rep-
resentation and Control,” Proceedings of the International Conference on
Robotics and Automation (ICRA-2002), IEEE Publications, Piscataway, NJ,
2002, pp. 863–868.

23Amit, R., and Matarić, M. J., “Learning Movement Sequences from
Demonstration,” Proceedings of the International Conference Development
and Learning (ICDL-2002), Inst. of Electrical and Electronics Engineers
Computer Society, Los Alamitos, CA, 2002, pp. 302–306.

24Del Vecchio, D., Murray, R. M., and Perona, P., “Primitives for Human
Motion: A Dynamical Approach,” International Federation of Automatic
Control, World Congress, CDS TR 01-009, 2002.

25Fod, A., Matarić, M. J., and Jenkins, O. C., “Automated Derivation
of Primitives for Movement Classification,” Autonomous Robots, Vol. 12,
No. 1, 2002, pp. 39–54.

26Jenkins, O. C., and Matarić, M. J., “Deriving Action and Behavior
Primitives from Human Motion Data,” Proceedings of the 2002 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS-2002),
IEEE Publications, Piscataway, NJ, 2002, pp. 2551–2556.

27Hauser, J., and Meyer, D., “Trajectory Morphing for Nonlinear Sys-
tems,” Proceedings of the American Control Conference, American Auto-
matic Control Council, Evanston, IL, 1998, pp. 2065–2070.

28Gavrilets, V., Frazzoli, E., Mettler, B., Piedmonte, M., and Feron, E.,
“Aggressive Maneuvering of Small Autonomous Helicopters: A Human-
Centered Approach,” International Journal of Robotics Research, Vol. 20,
No. 10, 2001, pp. 795–807.

29Gavrilets, V., Mettler, B., and Feron, E., “Human-Inspired Control Logic
for Automated Maneuvering of Miniature Helicopter,” Journal of Guidance,
Control, and Dynamics, Vol. 27, No. 5, 2004, pp. 752–759.

30Piedmonte, M., and Feron, E., “Aggressive Maneuvering of Aerial Ve-
hicles: A Human-Centered Approach,” Robotics Research: The Ninth Inter-
national Symposium, edited by J. M. Hollerbach and D. E. Koditschek, New
York, Springer, 2000, pp. 413–420.

31Allgower, E. L., and Georg, K., Numerical Continuation Methods, An
Introduction, Springer-Verlag, Berlin, 1990, pp. 37–74.

32Rheinboldt, W. C., Numerical Analysis of Parametrized Nonlinear
Equations, University of Arkansas Lecture Notes in the Mathematical Sci-
ences, Vol. 7, Wiley, New York, 1986, pp. 113–139.

33Roweis, S., and Saul, L., “Nonlinear Dimensionality Reduction
by Locally Linear Embedding,” Science, Vol. 290, No. 5500, 2000,
pp. 2323–2326.

34Tenenbaum, J. B., de Silva, V., and Langford, J. C., “A Global Geometric
Framework for Nonlinear Dimensionality Reduction,” Science, Vol. 290,
No. 5500, 2000, pp. 2319–2323.

35Thomson, D. G., and Bradley, R., “The Mathematical Definition of
Helicopter Maneuvers,” Journal of the American Helicopter Society, Vol. 42,
No. 4, 1997, pp. 307–309.

36Bemporad, A., and Morari, M., “Control of Systems Integrating
Logic, Dynamics, and Constraints,” Automatica, Vol. 35, No. 3, 1999,
pp. 407–427.

37Borrelli, F., Constrained Optimal Control of Linear and Hybrid Systems,
Springer-Verlag, Berlin, 2003, pp. 25–62.

38Brockett, R. W., “Hybrid Models for Motion Control Systems,” Essays
on Control: Perspectives in the Theory and its Applications, edited by H. L.
Trentelman and J. C. Willems, Birkhäuser, Boston, 1993, pp. 29–53.

39Jongen, H. Th., and Weber, G.-W., “On Parametric Nonlinear Pro-
gramming,” Annals of Operations Research, Vol. 27, No. 1–4, 1990,
pp. 253–284.

40Lundberg, B. N., and Poore, A. B., “Numerical Continuation and Sin-
gularity Detection Methods for Parametric Nonlinear Programming,” SIAM
Journal on Optimization, Vol. 3, No. 1, 1993, pp. 134–154.

41Rakowska, J., Haftka, R. T., and Watson, L. T., “An Active Set Algorithm
for Tracing Parametrized Optima,” Structural Optimization, Vol. 3, 1991,
pp. 29–44.

42Golub, G. H., and Van Loan, C. F., Matrix Computations, 3rd ed., John
Hopkins Univ. Press, Baltimore, MD, 1996, pp. 256–264.

43Spiteri, R. J., Pai, D. K., and Ascher, U. M., “Programming and Control
of Robots by Means of Differential Algebraic Inequalities,” IEEE Transac-
tions on Robotics and Animation, Vol. 16, No. 2, 2000, pp. 135–145.

44Spiteri, R. J., Ascher, U. M., and Pai, D. K., “Numerical Solution of
Differential Systems with Algebraic Inequalities Arising in Robot Program-
ming,” Proceedings of the 1995 International Conference on Robotics and
Automation, Vol. 3, Robotics and Automation Society, Danvers, MA, 1995,
pp. 2373–2380.

45“3D Helicopter System (with Active Disturbance),” User’s Manual,
Quanser Consulting, Markham, ON, Canada, 2003.

46de Boor, C., A Practical Guide to Splines, revised edition, Applied
Mathematical Sciences, Vol. 27, edited by J. E. Marsden and L. Sirovich,
Springer-Verlag, New York, 2001, pp. 109–144.

47Leishman, J. G., Principles of Helicopter Aerodynamics, Cambridge
Univ. Press, Cambridge, England, U.K., 2000, pp. 43, 44, 66–68.

48Frazzoli, E., Dahleh, M. A., and Feron, E., “Real-Time Motion Plan-
ning for Agile Autonomous Vehicles,” Journal of Guidance, Control, and
Dynamics, Vol. 25, No. 1, 2002, pp. 116–129.

49Mettler, B., Valenti, M., Schouwenaars, T., Frazzoli, E., and Feron,
E., “Rotorcraft Motion Planning for Agile Maneuvering,” Proceedings
of the 58th Forum of the American Helicopter Society, Alexandria, VA,
2002.

50Bellingham, J., Richards, A., and How, J. P., “Receding Horizon Con-
trol of Autonomous Aerial Vehicles,” Proceedings of the American Con-
trol Conference, American Automatic Control Council, Evanston, IL, 2002,
pp. 3741–3746.

302 DEVER ET AL.

51Richards, A., and How, J. P., “Aircraft Trajectory Planning with Colli-
sion Avoidance Using Mixed Integer Linear Programming,” Proceedings of
the American Control Conference, American Automatic Control Council,
Evanston, IL, 2002.

52Schouwenaars, T., Mettler, B., Feron, E., and How, J., “Hybrid Ar-
chitecture for Full-Envelope Autonomous Rotorcraft Guidance,” American
Helicopter Society 59th Annual Forum, Alexandria, VA, 2003.

53Schouwenaars, T., Mettler, B., Feron, E., and How, J., “Hybrid Model
for Receding Horizon Guidance of Agile Autonomous Rotorcraft,” 16th
IFAC Symposium on Automatic Control in Aerospace, 2004.

54Dever, C. W., “Parametrized Maneuvers for Autonomous Vehicles,”
Ph.D. Dissertation, Massachusetts Inst. of Technology, Cambridge, MA,
Sept. 2004.

55Dever, C., Mettler, B., Feron, E., Popović, J., and McConley, M., “Tra-
jectory Interpolation for Parametrized Maneuvering and Flexible Motion
Planning of Autonomous Vehicles,” AIAA Paper 2004-5143, Aug. 2004.

56Tischler, M. B., and Cauffman, M. G., “Comprehensive Identifica-
tion from Frequency Responses: Flight Applications to BO-105 Coupled
Rotor/Fuselage Dynamics,” Journal of the American Helicopter Society,
Vol. 37, No. 3, 1992, pp. 3–17.

